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QED
Hydrogen system, solving the non-relativistic Schrodinger 
equation 

�~2
2µ

r2 + V (~r, t)

�
 (~r, t) = E (~r, t)

The electric potential between two charge particles is just 
the Coulomb form

V (~r) = �↵

r

Quantized spectra
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Many-body QED
To understand materials in ordinary life, it is extremely 
important to understand the many-electronic system 

As a warm up, let’s consider a simple system with two 
electrons and two positrons 
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In 1946, Wheeler suggested a 
possible di-positronium molecular 
state, based on a simple variation 
calculation to estimate the additional 
binding energy 
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Calculation for Ps2
Many methods have been adopted to calculate the ground 
state energy: including the variation method and Quantum 
Monte Carlo methodVariational treatment of positronium molecules 4943 

Table 10. Calculations of binding energies of the positronium molecule wsi 

Binding energy (ops2) 

Author Ryd eV 

Hyllemas and Ore (1947) -0.0085 -0.1 16 
Ore (1947) -0.009 -0.122 
&mot0 and Hamamura (1972b) -0.0135 -0.184 
Brinkman ef nl (1973) -0.0145 -0.197 
Lee ern1 (1983) - 0 . 0 3 ~ o . a ~  -0.408+0.027 
Ho (1986) -0.0302 -0.411 
Kinghorn and Poshusta (1993) -0.03198 -0.435 
KOzIOwSld and Adamowicz (1993) -0.031 98 -0.435 
Present calculation at m6 = 1 -0.0421 -0.573 

component as well as a more general envelope function of the form 

It is interesting to point out that our result of wpgz = -0.0307 Ryd at n = 20 (see table 6) 
is very close to the value obtained by Lee et a1 (1983) (wps2 = -0.03 f 0.002 Ryd) using 
the Green function Monte Carlo method, see table 10. 

The same table shows also that our best value of wpS2 lies considerably below the best 
value calculated using 300 components of correlated Gaussian functions (Kinghorn and 
Poshusta 1993, Kozlowski and Adamowicz 1993). This fact is attributed to the complicated 
physical picture of Ps2 described by ow wavefunction. Obviously further lowering of opsl 
is still possible and the correlated Gaussian picture implies additional improvement. 

As an end for the energies, we would like to point out that ow computer program is 
able U, give us all the eigenvalues and eigenfunctions of our system. The result of our 
calculations do not give negative binding energies except for the ground state of the Psz 
molecule, i.e. we are unable to provide a positive conclusion about the existence of higher 
states. This result is in agreement with all investigations carried out by other authors. 

The average values of all six internal distances ( r r j )  of the Psz molecule have been 
determined using a wavefunction composed of the first 21 components of our wavefunction 
listed in table 3 with the envelope function ue-y". It is important to mention that the 
calculation of (rab) has been carried out using the same principle as that for calculating (T.) 
and (Tb), i.e. by employing the coordinate system defined in equation (25). 

A comparison between our results and the results obtained by Ho (1986) and Kinghorn 
and Poshusta (1993) is shown in table 11 . 

{(c~u)~exp( -c~u)  + c~exp(-cju)]. 

Table 11. Avenge internal distances (in 9) of Psz molecules, 

Ho (1986) 5.98 5.88 5.93 5.5 
Kinghorn and Poshusta (1993) 4.48 6.03 6.03 4.48 
Present work 4.26 5.92 5.92 4.26 

It is seen that all average electron-positron distances calculated via our wavefunction 
are identical to each other, This fact reflects the symmetry of the molecule. It is interesting 
to mention that the values obtained by Ho for TIa, rlb are not identical (see table 11). 
On the other hand, the internal distances of Kinghorn and Poshusta (1993) reflect the 

El-Gogary, et. al., J. Phys. B, 28 (1995) 4927 

The additional binding energy is -0.435 eV 
The ratio is 0.435/13.6 = 3.2%; a small binding 
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Calculation for Ps2

The ratio is 0.435/13.6 = 3.2%; a small binding 

This small binding energy 
can be understood as the 
London-van der Waals 
force ~ �↵/R6

|0i|mi hm|

|mi hm| |0i

h0|

h0|
C. Positronium molecule, Ps2 : First excited state

In our previous paper we have predicted the existence of
the first excited state of the Ps2 molecule. This is a unique
bound state that cannot decay into two Ps atoms due to the
Pauli principle. The spin of this state is S50 and the orbital
angular momentum is L51 with negative parity. In this spin
state, the Ps2 molecule can dissociate into two Ps atoms
~bosons! only if the relative orbital angular momentum is
even. Consequently, the Ps2 molecule with L51 and nega-
tive parity cannot decay into the ground states of two Ps
atoms

@

Ps(L50)1Ps(L50)
#

. The energy of this Ps2(L
51) state (E520.334 408 a.u., see Table III! is lower than
the energy of the relevant threshold (20.3125 a.u.), and
this state is therefore stable against the autodissociation into
Ps(L50)1Ps(L51). The binding energy of this state is
0.5961 eV, which is greater by about 40% than that of the
ground state of Ps2 ~0.4355 eV!.

TABLE IV. Expectation values of various quantities for the ground state of Ps2 . Atomic units are used.
The positrons are labeled 1 and 3 and the electrons are 2 and 4. Because of the charge-permutation symmetry,
e.g.,

^
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K5100 5161.6174 2786.7091 442.51382 252.36242 46.328357 29.088855
K5200 5194.6167 2803.5558 443.64812 252.94378 46.368857 29.109699
K5400 5199.4736 2805.9782 443.77879 253.00898 46.372453 29.111485
K5800 5201.9725 2807.2389 443.85091 253.04531 46.374698 29.112612
K51200 5201.9467 2807.2264 443.85059 253.04519 46.374696 29.112613
K51600 5202.0371 2807.2718 443.85244 253.04611 46.374735 29.112633

^
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r13
21

& ^

r12
21

& ^

r13
22

& ^

r12
22

&

K5100 6.0316960 4.4863741 0.22080676 0.36840509 0.073455963 0.30308260
K5200 6.0330476 4.4870759 0.22079128 0.36839678 0.073445434 0.30309811
K5400 6.0331385 4.4871188 0.22079076 0.36839718 0.073444789 0.30310268
K5800 6.0332061 4.4871525 0.22079007 0.36839692 0.073444360 0.30310349
K51200 6.0332062 4.4871526 0.22079008 0.36839693 0.073444319 0.30310354
K51600 6.0332070 4.4871530 0.22079007 0.36839693 0.073444303 0.30310361

^

r13•r12& ^

r12•r14& ^

d(r13)& ^

d(r12)& ^

π1•π2& ^

π1•π3&

K5100 23.164179 5.9246760 0.0006409 0.0219092 0.13077374 20.00354409
K5200 23.184429 5.9252702 0.0006309 0.0220330 0.13077237 20.00354402
K5400 23.186227 5.9252581 0.0006284 0.0220860 0.13077326 20.00354475
K5800 23.186163 5.9252654 0.0006266 0.0221064 0.13077327 20.00354466
K51200 23.187348 5.9252652 0.0006267 0.0221075 0.13077325 20.00354461
K51600 23.187368 5.9252651 0.0006259 0.0221151 0.1307732538 20.0035446132
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K5100 20.25800339 0.731025

K5200 20.25800073 0.231025

K5400 20.25800178 0.131026

K5800 20.25800188 0.231027

K51200 20.25800188 0.431028

K51600 20.258001894 0.331029

FIG. 2. The correlation functions r2C(r) for the ground state of
the Ps2 molecule. The solid curve denotes the electron-electron cor-
relation and the dashed curve the electron-positron correlation. For
the sake of comparison, the electron-positron correlation function
for the Ps atom is drawn by the dotted curve.

1924 PRA 58J. USUKURA, K. VARGA, AND Y. SUZUKI

e�e+

e�e�

hydrogen
The wave-functions are 
modified compared to the 
hydrogen one

Suzuki, et. al, PRA 58 (1998) 1918
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Experimental Confirmation for Ps2

The existence of di-positronium molecular is only 
demonstrated in 2007

Cassidy and Mills, Nature 449, (2007) 195 

temperature dependence of the quenching. The basis for this differenti-
ation is the fact that, neglecting three-body collisions, molecule forma-
tion is constrained to take place on a surface to conserve momentum,
whereas SEQ is not. Ps may be thermally desorbed from surfaces, so we
can control the fraction of atoms in the surface state via the temperature.
This means that the temperature dependence of the quenching effect
will be different for molecule formation and for SEQ; in the former
case, heating will depopulate the surface states and therefore reduce the
quenching, while in the latter case, heating would increase both the Ps
density and the Ps–Ps interaction rate, which would increase the
quenching. We observed that heating greatly reduces the quenching
signal, unequivocally indicating molecule formation.

Figure 2a shows the temperature dependence of fd. It is clear from
the figure that the amount of long-lived Ps increases at higher tem-
peratures, which we attribute to the thermal desorption of Ps from
surface states. This leads to an increase in the amount of long-lived Ps
present, because the lifetime of Ps on the surface is less than that in the
voids. The data of Fig. 2a are divided into two distinct data sets; the
difference between them is associated with the heating of the silica
film to over 500 K for many hours (point 13). This was probably due
to the thermal repair of positron trapping sites in the bulk material17

or structural modifications caused by prolonged heating.
The solid lines in Fig. 2a are fits of an Arrhenius type, characteristic

of thermally activated processes (see Methods). Such processes are
typically parameterized by an activation energy Ea and a sticking (or
accommodation) coefficient S, which is the probability that an
atom remains on a surface immediately after impact. The thermal
desorption of Ps from metallic surface states is well-known and has
been extensively studied18,19. These activation energies are typically a
few tenths of an electron volt and the sticking coefficients are close to
unity, owing to the strong Coulomb interactions with the metallic
electron gas20. There is also evidence to suggest that a Ps surface state
exists on both crystalline21,22 and amorphous SiO2 (ref. 23) and our
data are fully consistent with such a process. In this case S is very small
because energy can only be exchanged with the surface by a weak
coupling to phonons or other surface modes24.

We quantify the quenching effect using the negative of the slope of
Dfd(n2D), Q:{dDfd=dn2D. We used linear fits ofDfd(n2D), similar to
those shown in Fig. 1, to all of the data to determine Q(T), which is
plotted in Fig. 2b. These data are separated into two distinct data sets
in the same way as the data of Fig. 2a. The solid lines in Fig. 2b are fits
similar to those of Fig. 2a (see Methods). Fitting the data in Fig. 2a
yields activation energies (64 6 23) and (83 6 21) meV and sticking
coefficients of log10S 5 (25.45 6 0.42) and (25.34 6 0.35) for the
first and second data sets respectively. Similar fits were made to the
data of Fig. 2b fixing the activation energy to be 74 meV, the average
value obtained from the fits in Fig. 2a. The quality of the fits to all data
sets reassures us that it is indeed appropriate to split the data into two
sets, and that the model we use is essentially correct. The sticking

coefficients obtained in this way for the first and second runs were
log10S 5 (25.12 6 0.12) and (24.88 6 0.12). The small sticking co-
efficient (S < 1025) is consistent with a very light particle of mass 2me

(where me is the mass of the electron) that can only lose energy via
phonons on a surface made of SiO2 molecules (mass < 1.1 3 105me).

We obtain the same sticking coefficient (within errors) from all
four data sets, which means that the data are consistent with a single
thermally activated process, namely the thermal desorption of Ps.
Moreover, fd(T) and Q(T) are essentially mirror images of one
another, indicating that these quantities depend oppositely on the
relative population of the Ps surface state. This indicates that the
quenching process must be taking place on the pore surfaces, and
we conclude that it is the formation of positronium molecules.

There are some other possible mechanisms that could, in principle,
give rise to the signal we observe. To be consistent with the data, any
such mechanism must involve two or more positrons, take place on
the internal pore surfaces and result in a reduction of the amount of
long-lived Ps.

We can immediately rule out the thermal dissociation of Ps2 mole-
cules as the source of Q(T), because this would be unlikely to follow
the same temperature dependence as the thermal desorption. Also, the
activation energy we measure (,0.074 eV) is much less than the
,0.4 eV Ps2 binding energy3. Furthermore, half of the dissociated Ps
atoms would be in a singlet state; these atoms would still contribute to
the quenching signal and the maximum reduction in Q due to heating
would therefore be 50%, which is not consistent with the data.

If the ‘‘spur’’ electrons25 created in the silica by the incident posi-
trons were able to interact with each other, it is possible that Ps
formation could be inhibited in a manner that depends on the beam
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Figure 1 | Density dependence of the amount of long-lived Ps. The shift in
fd relative to the mean value for all beam densities is shown for three
representative temperatures. The solid lines are linear fits used to determine
the parameter Q as described in the text. The 1s error bars are determined by
the distribution of sets of at least 50 individual measurements each.
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Figure 2 | Temperature dependence of fd and Q. a, fd as a function of
temperature measured using a beam density of 0.9 3 1010 cm22. The 1s
error bars were determined by requiring the x2 value per degree of freedom
for the fits to be close to unity. b, Q as a function of temperature obtained by
fitting the density dependence of fd. The 1s error bars are from the fits used
to obtain Q as in Fig. 1. The data points are labelled in the order in which they
were taken. The lines are fits of equations (4) to the data. The filled and open
circles are data from the first and second runs respectively, whereas the star
symbols represent data ignored in the fits. Point 13 was apparently in
transition between the low- and high-fd runs. Points 22–25 were obtained
using an improperly adjusted positron accumulator that yielded on average
about twice as many positrons per pulse as the rest of the data. For these runs
the beam intensity was unstable and actually of lower (and uncertain) areal
density. These data yield reliable values for fd, but we do not trust them to
give usable measures of Q.

LETTERS NATURE | Vol 449 | 13 September 2007

196
Nature   ©2007 Publishing Group

fd is a measure of 
the amount of o-Ps 
created 

How do lifetime spectra change if Ps 
atoms interact with each other?

• If SEQ occurs, o-Ps atoms 
are converted to p-Ps atoms 
and decay rapidly (γ ~ 8 ns-1)

• If Ps2 molecules are formed 
these will also decay rapidly 
(γ ~ 4 ns-1)

• Present resolution cannot tell 
the difference.

• Decay becomes non-linear: 

)1( nn
dt
dn

βγ +−=

Ordinary (pick-off) 
decay

decay due to 
Ps-Ps 
interactions

parameter β describes 
strength of SEQ and/or 
Ps2 formation
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QCD
QCD behaves different from QED, especially at a long 
distance

9. Quantum chromodynamics 39

reasonably stable world average value of αs(M2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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Kronfeld, K. Kousouris, M. Lüscher, M. d’Onofrio, S. Sharpe, G. Sterman, D. Treille,
N. Varelas, M. Wobisch, W.M. Yao, C.P. Yuan, and G. Zanderighi for discussions,
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♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [379],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

February 10, 2016 16:30

It is asymptotically free at a short distance and has 
confinement at a long distance 
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QCD Static Potential
At short-distance, one could use the approximate one-
gluon exchange Coulomb force

Appelquist and Politzer used this fact to predict the spin-
one charmonium state based on Quantum Mechanics 
calculation, which is soon measured as J/Psi

To have a more precise QM 
calculation for the 
quarkonium spectroscopy, 
phenomenological potential 
is widely used 

31

FIG. 32: Typical scales appearing in a quarkonium annihila-
tion diagram

su�ciently long-lived that a bound state has time to form
and therefore are sensitive to the scale mv2. Ultrasoft
gluons are responsible for phenomena like the Lamb shift
in QCD. The existence of several scales complicates the
calculations. In perturbative calculations of loop dia-
grams the di↵erent scales get entangled, challenging our
abilities to perform higher-order calculations. In lattice
QCD, the existence of several scales for quarkonium sets
requirements on the lattice spacing (a < 1/m) and overall
size (La > 1/(mv2)) that are challenging to our present
computational power.

However, it is precisely the rich structure of separated
energy scales that makes heavy quarkonium particularly
well-suited to the study of the confined region of QCD, its
interplay with perturbative QCD, and of the behavior of
the perturbation series in QCD: heavy quarkonium is an
ideal probe of confinement and deconfinement. Quarko-
nia systems with di↵erent radii have varying sensitivies
to the Coulombic and confining interactions, as depicted
in Fig. 33. Hence di↵erent quarkonia will dissociate in
a medium at di↵erent temperatures, providing, e.g., a
thermometer for the plasma, as discussed in Sect. 5.3.

2.5. Nonrelativistic e↵ective field theories

The modern approach to heavy quarkonium is
provided by Nonrelativistic E↵ective Field Theories
(NR EFTs) [134]. The idea is to take advantage of the
existence of a hierarchy of scales to substitute simpler but
equivalent NR EFTs for QCD. A hierarchy of EFTs may
be constructed by systematically integrating out modes
associated with high-energy scales not relevant for the
quarkonium system. Such integration is performed as
part of a matching procedure that enforces the equiva-
lence between QCD and the EFT at a given order of the
expansion in v. The EFT realizes factorization between
the high-energy contributions carried by the matching

FIG. 33: Static QQ potential as a function of quarkonium
radius r

coe�cients and the low-energy contributions carried by
the dynamical degrees of freedom at the Lagrangian level.
The Poincaré symmetry remains intact at the level of the
NR EFT in a nonlinear realization that imposes exact re-
lations among the EFT matching coe�cients [135, 136].

2.5.1. Physics at the scale m: NRQCD

Quarkonium annihilation and production occur at the
scale m. The suitable EFT is Nonrelativistic QCD [137,
138], which follows from QCD by integrating out the scale
m. As a consequence, the e↵ective Lagrangian is orga-
nized as an expansion in 1/m and ↵s(m):

LNRQCD =
X

n

cn(↵s(m), µ)

mn
⇥On(µ,mv,mv2, ...), (10)

where On are the operators of NRQCD that are dy-
namical at the low-energy scales mv and mv2, µ is the
NRQCD factorization scale, and cn are the Wilson coef-
ficients of the EFT that encode the contributions from
the scale m and are nonanalytic in m. Only the upper
(lower) components of the Dirac fields matter for quarks
(antiquarks) at energies lower than m. The low-energy
operators On are constructed out of two or four heavy-
quark/antiquark fields plus gluons. The operators bilin-
ear in the fermion (or antifermion) fields are the same
ones that can be obtained from a Foldy-Wouthuysen
transformation of the QCD Lagrangian. Four-fermion
operators have to be added. Matrix elements of On de-
pend on the scales µ, mv, mv2 and ⇤QCD. Thus oper-
ators are counted in powers of v. The imaginary part
of the coe�cients of the four-fermion operators contains
the information on heavy quarkonium annihilation. The

Brambilla, et. al., arXiv:1010.5827

V (r) = �4

3
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r
+

r

a2



10

QCD Spin-dependent Potential
The situation is similar to the QED for the short-distance 
SD interactions 
The delta function part of the potential is given by 

V (~r) = �4

3
↵s

2

3m1m2

~S1 · ~S2 4⇡�(~r)

This can generate the 
spin splitting energy 
from perturbation 
calculations

2738 K. EIC H TEN AN D F. FEIN BERG

gives x,„=1.02. For comparison a pure K ~ S
coupling gives x =2 whereas a pure Coulomb
potential gives x =5. The details of the contribu-
tions to the spin splitting from the perturbative
term and confining potential terms in Eg. (7.5)
are shown in Table I. The splitting, J/ilt-q, has
recently been measured experimentally": m(J/iIt)
-m(q, ) =116+9MeV. The result agrees well with
the lowest-order splitting calculated above. How-
ever, the theoretical calculation has uncertainties
that must be mentioned. The spin-spin force here
is the lowest-order perturbative result first sug-
gested by Appelquist and Politzer, "a result which
depends linearly on u, and the wave function at
the origin squared. However, caution must be
exercised in using relations depending on the
wave function at the origin since even in the non-
relativistic limit they may have large perturbative
corrections. For example, the leptonic width of
the J/g is related to the wave function at the origin
in lowest order in n, by the Van-Royen-Weisskopf
relation:
r(J/y-2'I ) =4(')n' le(0-) I'/M, /, '. (7.7a)

This relation does not agree with experiment for
the value of IC'(0) I' calculated with the potential
model of Eq. (7.2). However, first-order cor-
rections in o,, have been calculated" and are
indeed large. The corrected relation is
r (J/1I'-I'2 ) =4( )o.'/Mg/, ' I+(0) I'[1 —Vtx. +O(n.')]

(7.7b)
Equation (7.7b) to order o., actually works well
for the J/iIt resonance but, of course, there is

TABLE I. Details of spin splittings in the (cc) system
(in MeV).

should hold independent of the size of the pertur-
bative corrections. Thus the splitting between
tl' and rI', is expected to be

m(tlt') -m(rl,') =80 +15 MeV (7.8b)
using Eq. (7.8a) and the experimental values of
the leptonic width of the J/1It and iIt' and the m(71,).
Now we analyze the bb system in which the

heavy-quark expansion should be better. The
parameters for the bb resonances are a,(4m p')
= tx,(4m, ')[1+ (25/12m) In(m„'/m, '] ' =0.227, K~
=0.483, m~=5. 17 GeV, and a =2.34 GeV '. The
resulting spectrum" including the spin-dependent
forces is shown in Fig. 6. The detailed contribu-
tions to the spin splittings from each of the terms

no assurance that there are not also large cor-
rections in order n,'. Similarly there might be
large perturbative corrections to the spin-spin
splittings, but these corrections are not identical
to those for the leptonic width, and the agreement
between the lowest-order result and experiment
suggests that the total correction term is actually
small. A one-loop n, calculation" should resolve
this question. However, the separation of the
short- and long-distance parts of the correction
for the spin-spin force is not as simple as it is
for the leptonic width.
The perturbative corrections to the lowest-order

relation between singlet-triplet splitting for 8
states and the wave function squared at the origin
will cancel out in ratios of splitting for different
radial quantum number. Thus the relation

m(tIt') -m(q'. ) Ie,.(0) I' r(q'- e'e-)M, .'
m(J/g) -m(rl, ) !sit„(0)I' r(i'- 8'e )M~/p'

(7.8a)
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Static Potential for Three Quarks
One can use the static potential to study baryon spectrum 
in the quark model. 
Based on the flux-tube model from the strong-coupling 
Hamiltonian lattice formation of QCD, one has two 
configurations to consider Isgur and Paton, ‘1985
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variance. There are two distinct flux configurations
depending on the relative positions of the quarks.
Consider the quarks in positions r1, r2, and r3 as
shown in Fig. 2. Suppose that none of the interior
angles of the triangle whose vertices are r„rz, and
r3 are greater than 120'. Then the flux tubes from
each quark will meet in the interior at positions r4,
and the total energy in the configuration is

2
V(r~rqr3)= (

I
ri —r4I+

I
r2 ~4I

3Q

It is clear, however, that if one of the interior angles
i of the triangle r, rzr3 is greater than 120' Eq.
(2.26) cannot be satisfied and the flux tube from the
vertex i will collapse to a point. Then the flux con-
figuration will consist of two linear segments as
shown in Fig. 3.
For completeness we eliminate r4 from Eq. (2.23).

An exercise in trigonometry gives for the flux con-
figuration of Fig. 2

I r;—r4I =r;4 (C r—p, )IS—,

+ I r3 r41 ) . (2.23)
where

(ij,k cyclic), (2.27)

It is crucial that in SU(3) gauge theory the vertex at
r4 can be constructed in a locally gauge-invariant
fashion. The operator which creates the state at
strong coupling is

1i,'(-. , )y,'(-.,)1(,'(-., )
x HU IIU II U e, , (2.24)

P3Js

where p; indicates the path from r; to r4 and e„„is
the usual antisymmetric tensor. Recall that in SU(3)
3(3) 3(3) 3= 1(38 8(3) 10, and the singlet is the antisym-
metric product of the three objects each transform-
ing as a 3. Finally, the position r4 is determined by
the condition that it minimize the static energy,

S =3C —g,
2 2 2k=riz +rz3 +r3i
2 2 2 2 2 2

12 ~23 + 23 ~31 +~31 12

(2.28)
(2.29)

(2.30)

(2.31)

For the flux configuration in Fig. 3 we note that
r4——r;.
It is instructive to decompose the total potential

energy (2.23) of the qqq system in the long-range
(LR) region into "two-body" and "three-body" in-
teractions as follows:

VLR( 1 2 3)

V4V=O (2.25) ,'~or, , +v 0 gr;4 ,
' gr„(2—.3—2)

l +J l l +J

&l.4=0 (2.26)
This decomposition is meaningful because the
three-body term is relatively small compared to the
sum of two-body terms. The ratio

where r;4 (r;—r&)I
I
r;—r4——I . As shown in the

figure, the angles that the flux tubes make with one
another are 120' independent of the r; themselves.

1

l4 Q lJ
1

lJ

is zero when the quarks are in a line, and it ap-

r4

FIG. 2. The flux-tube configuration in a three-quark
state at strong coupling, when none of the interior angles
of the triangle r &rqr 3 are greater than 120'.

FIG. 3. The flux-tube configuration in a three-quark
state when the angle at r & is greater than 120'.
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Static Potential for Three Quarks
The lattice simulation has supported the flux-tube model 
for static potential

V3Q
Coul!!

AQQ̄
2 "

i" j

1
!ri!rj!

, #26$

which is the potential form expected from the OGE process
in perturbative QCD. Reflecting the SU#3$ color factor, the
coefficient in V3Q

Coul between two quarks, of which combina-
tion belong the 3̄ representation, is set to be a half of the
coefficient in the color-singlet Q-Q̄ system. We note that AQQ̄
is already extracted from the lattice QCD data of the Q-Q̄
potential, as shown in Table XI.
In Figs. 10 and 11, we plot V3Q!V3Q

Coul as a function of
Lmin , using the lattice data of V3Q and AQQ̄ in Table XI from
the Q-Q̄ potential. In the whole region, the linearity on Lmin
is observed, which means that the 3Q potential V3Q can be
well described by a sum of the perturbative Coulomb term as
V3Q
Coul and the nonperturbative linear confinement term pro-
portional to Lmin , as shown in Eq. #4$. Thus, the lattice data
seem to support the Y Ansatz. Note here that this simple fit is
not the best fit in terms of the Y Ansatz with (A3Q ,%3Q ,C3Q),
and the Y Ansatz seems to work well even in this nonbest fit.
In the next section, we perform the fit analysis of the 3Q
potential with the Y Ansatz at the quantitative level.

B. The fit analysis with the Y Ansatz

We perform the best-fit analysis for the lattice QCD data
of V3Q in terms of the Y Ansatz with (A3Q ,%3Q ,C3Q) at each
& . We show in Table XI the best-fit parameter set
(A3Q ,%3Q ,C3Q) in the Y Ansatz for V3Q at each & . In Tables
II–X, we compare the lattice data V3Q

latt with the Y Ansatz
fitting function V3Q

fit in Eq. #4$ with the best-fit parameters in
Table XI. We observe a good agreement between V3Q

latt and
V3Q
fit . In fact, the deviation V3Q

latt!V3Q
fit is only within a few

percent of the typical scale of V3Q for every lattice data in
Tables II–X. #Since the potential includes an irrelevant con-

stant, the typical scale of V3Q is to be understood as its typi-
cal variation among the different 3Q systems rather than the
value itself.$ Thus, the three-quark ground-state potential
V3Q is well described by Eq. #4$ of the Y Ansatz within a few
percent deviation.
As a visual demonstration on the agreement of this fit, we

compare in Fig. 12 the lattice QCD data V3Q
latt at &#5.7 and

the best-fit curve of V3Q
fit as the function of i for each ( j ,k)

fixed, when the three quarks are located at
(i ,0,0),(0,j ,0),(0,0,k) in the lattice unit. While the lattice
data V3Q

latt are restricted on the integer of i and are expressed
as the points, V3Q

fit in Eq. #4$ can be calculated for an arbitrary
real number of i and is expressed as a curve for each ( j ,k).
In Fig. 12 at &#5.7, one finds a good agreement of the
lattice QCD data V3Q

latt and the fit curve V3Q
fit for each ( j ,k).

In spite of the good agreement of V3Q
latt with V3Q

fit , to be
strict, '2/NDF listed in Table XI seems relatively large,
which means the relatively large deviation V3Q

latt!V3Q
fit in com-

parison with the error. In addition to physical reasons, this
may be due to the underestimate of the error. In fact, the
statistical error itself seems very small, but the error should
be inevitably enlarged by the systematic error such as the
discretization error in lattice calculations. In particular, the
statistical error for the short-distance data is rather small, and
such a smallness of the short-distance error seems to provide
the large value of '2/NDF , which may indicate an impor-
tance to control the finite lattice-spacing effect. Of course,
this point would be clarified if the lattice QCD study with the
finer and larger lattice is performed. Besides the direct check
on the & dependence, the similar fit analysis with the lattice
Coulomb potential is expected to be meaningful. On the lat-
tice, to be strict, the Coulomb potential is to be modified into
the lattice Coulomb potential, which contains the finite
lattice-spacing effect more directly. Hence, the fit with the
lattice Coulomb potential is expected to reduce the discreti-
zation error from the finite lattice spacing, especially for the

FIG. 11. The semiquantitative test on the confinement part in the
3Q potential V3Q at &#6.0. The Coulomb-subtracted potential
V3Q
latt!V3Q

Coul is plotted as the function of Lmin , the minimal value of
the total flux-tube length. Here, the Coulomb part V3Q

Coul is evaluated
from the Q-Q̄ potential.

FIG. 12. The comparison between the lattice QCD data V3Q
latt at

&#5.7 and the fitted curve of V3Q
fit as the function of i for each ( j ,k)

fixed, when the three quarks are located at (i ,0,0),(0,j ,0),(0,0,k) in
the lattice unit. The lattice data V3Q

latt are expressed as the points, and
V3Q
fit is expressed as the solid curve for each ( j ,k).
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V3Q!" lim
T→!

1
T ln"W3Q#. $5%

The 3Q Wilson loop W3Q is defined in a gauge-invariant
manner as

W3Q&
1
3! 'abc'a!b!c!U1

aa!U2
bb!U3

cc! $6%

with the path-ordered product

Uk&P exp! ig"
(k

dx)A)$x %# $k!1,2,3 %, $7%

along the path denoted by (k in Fig. 2. As shown in Fig. 2,
the 3Q Wilson loop physically expresses the 3Q gauge-
invariant state which is generated at t!0 and is annihilated
at t!T with the three quarks spatially fixed in R3 for 0#t
#T .
The initial $or the final% 3Q state is introduced as the

stringlike object in the naive 3Q Wilson loop. However, the
physical ground state of the 3Q system, which is of interest
here, is expected to be expressed by the flux tubes instead of
the strings, and then the 3Q state which is expressed by the
strings generally includes excited-state components such as
flux-tube vibrational modes. Of course, if the large T limit
can be taken, the ground-state potential would be obtained.
However, the practical measurement of "W3Q# is rather se-
vere for large T in lattice QCD calculations because "W3Q#
decreases exponentially with T.
Therefore, for the accurate measurement of the 3Q

ground-state potential V3Q , it is practically indispensable to
reduce the excited-state components in the 3Q system intro-
duced at t!0 and t!T in the 3Q Wilson loop. The gauge-
covariant smearing method is one of the most useful tech-
niques for ground-state enhancement *32,34,5+ without
breaking the gauge covariance, and is adopted to measure the
Q-Q̄ potential and the glueball mass *35+ in the recent lattice
QCD calculation. $This smearing method was not applied to
a few pioneering lattice studies on the 3Q potential *24,26+,
since the smearing technique was mainly developed after
their works. As will be discussed later, their numerical results
seem to include fatal large excited-state contaminations.%

In this paper we perform the accurate measurement of the
3Q ground-state potential V3Q using the ground-state en-
hancement by the gauge-covariant smearing method for the
link-variable in SU(3)c lattice QCD at the quenched level
*32+.

B. The smearing method for the ground-state enhancement

Let us consider here the physical states of the 3Q system
with the spatially fixed quarks. In this 3Q system, of course,
there is no valence-quark motion, and the central issue is the
gluonic configuration under the boundary condition of the
spatially fixed three quarks, which play the role of the color
source of the gluonic color-electric flux.
Like the Q-Q̄ flux-tube system, the ground state of the 3Q

system is expected to be composed by flux tubes rather than
the strings *3,12+, and there are many excited states of the 3Q
system corresponding to the flux-tube vibrational modes *3+.
We here express the 3Q Wilson loop with the normalized
physical states, the 3Q ground state $g.s.;t#, and the kth ex-
cited 3Q state $kth e.s.;t# at t. In the 3Q Wilson loop, the
normalized gauge-invariant 3Q state $3Q;0# created at t!0
and $3Q;T# annihilated at t!T can be expressed as

$3Q;0#!c0$g.s.;0#$c1$1st e.s.;0#$c2$2nd e.s.;0#$••• ,
$3Q;T#!c0$g.s.;T#$c1$1st e.s.;T#$c2$2nd e.s.;T#$••• ,

$8%

with the coefficients ci obeying the normalization condition
, i!0

! $ci$2!1. Then, the expectation value of W3Q can be
expressed as

"W3Q$T %#!"3Q;T$3Q;0#!$c0$2"g.s.;T$g.s.;0#

$$c1$2"1st e.s.;T$1st e.s.;0#$•••
!$c0$2 exp$"Vg.s.T %$$c1$2 exp$"V1st e.s.T %

$••• , $9%

with the ground-state potential Vg.s. and the kth excited-state
potential Vkth e.s. , which correspond to the energy eigenval-
ues of the 3Q system. *Note that the normalization here is
consistent with the definition of W3Q in Eq. $6%, which leads
to "W3Q(T!0)#!1.+
As increasing T, the excited-state components drop faster

than the ground-state component in "W3Q#; however, the
ground-state component $c0$2 exp("Vg.s.T) also decreases
exponentially. Hence, we face a practical difficulty in ex-
tracting the numerical signal. To avoid this difficulty, we
adopt the smearing technique *3,5,34+ which enhances the
ground-state overlap as $c0$2 and removes the excited-state
contamination efficiently.
The smearing method is one of the most popular and use-

ful techniques to extract the ground-state potential in lattice
QCD. The standard smearing for link variables is expressed
as the iterative replacement of the spatial link variable
Ui(s) (i!1,2,3) by the obscured link variable Ūi(s)
!SU(3)c *5,34+ which maximizes

FIG. 2. The 3Q Wilson loop W3Q . The 3Q state is generated at
t!0 and is annihilated at t!T . The three quarks are spatially fixed
in R3 for 0#t#T .
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Static Potential for Four Quarks
For the four-quark state, more configurations exist
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Static Potential for Four Quarks
diquark-diquark configuration
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the “good” diquark is used here; triplet color contraction
for the “bad” sextet diquark contraction, replace the 
coefficients (-1/3,  -2/3)   by (-5/6, 1/3), which provides a 
larger value
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Static Potential for Four Quarks
The four-quark static potential is to find the minimum 
value of all three configurations

V 4Q ⌘ min
�
V flip�flop, V butterfly

�

This potential is again supported by Lattice QCD 
simulation

5

M̃i, L̃i,R̃i (i=1,2) are given by

M̃i, L̃i, R̃i ≡ P exp {ig
∫

Mi,Li,Ri

dxµAµ(x)} ∈ SU(3)c.(9)

Here, L̃12 and R̃12 are defined by

L̃a′a
12 ≡

1

2
ϵabcϵa

′b′c′Lbb′

1 Lcc′

2 , (10)

R̃a′a
12 ≡

1

2
ϵabcϵa

′b′c′Rbb′

1 Rcc′

2 . (11)

The ground-state 4Q potential V4Q is extracted as

V4Q = − lim
T→∞

1

T
ln⟨W4Q⟩. (12)

In general, the 4Q Wilson loop ⟨W4Q⟩ contains excited-
state contributions, and is expressed as

⟨W4Q⟩ =
∞
∑

n=0

Cne−VnT , (13)

where V0 denotes the ground-state 4Q potential V4Q and
Vn (n = 1, 2, 3..) the nth excited-state potential. In prin-
ciple, V4Q can be obtained from the behavior of ⟨W4Q⟩ at
the large T region where the ground-state contribution
becomes dominant. In the practical simulation, however,
the accurate measurement of V4Q is not easy for large T ,
since ⟨W4Q⟩ decreases exponentially with T .

To extract the ground-state potential V4Q in lattice
QCD, we adopt the gauge-covariant smearing method
[2, 3, 4, 5, 6, 7] to enhance the ground-state compo-
nent of the 4Q state in the 4Q Wilson loop. The smear-
ing is known to be a powerful method for the accurate
measurement of the Q-Q̄ [2, 3, 4] and the 3Q potentials
[5, 6, 7], and is expressed as the iterative replacement
of the spatial link variables Ui(s) (i=1,2,3) by the ob-
scured link variables Ūi(s) ∈ SU(3)c which maximizes
Re tr {Ū †

i (s)Vi(s)} with

Vi(s) ≡ αUi(s) +
∑

j ̸=i

∑

±

{U±j(s)Ui(s ± ĵ)U †
±j(s + î)} (14)

with the simplified notation of U−j ≡ U †
j (s− ĵ). We here

adopt the smearing parameter α = 2.3 and the itera-
tion number Nsmr = 30, which enhance the ground-state
component in the 4Q Wilson loop at β=6.0 in most cases.
(See the next section.)

IV. LATTICE QCD RESULTS FOR THE 4Q
POTENTIAL

The lattice QCD simulations are performed with the
standard plaquette action at β = 6.0 on the 163 × 32
lattice at the quenched level. The lattice spacing a is
estimated as a ≃ 0.104fm, which leads to the string ten-
sion σQQ̄ ≃ (427MeV)2 in the QQ̄ potential, using the

numerical relation σQQ̄ ≃ 0.0506a−2 obtained from the
fitting analysis on the on-axis data of the QQ̄ potential
in lattice QCD at β = 6.0 [6, 8]. The gauge configura-
tions are taken every 500 sweeps after 5000 sweeps using
the pseudo-heat-bath algorism. We use 300 configura-
tions for the 4Q potential simulation. For the estimation
of the statistical error of the lattice data, we adopt the
jack-knife error estimate.

On the 163× 32 lattice, we investigate the typical con-
figuration of 4Q systems as shown in Figs.6 and 7. In
Fig.6, the 4Q system has a planar structure. In Fig.7, the
4Q system has a twisted (three-dimension) structure. In
particular, we analyze in detail the symmetric planar and
twisted 4Q configurations with d1 = d2 = d3 = d4 ≡ d,
although more general asymmetric 4Q configurations
with various (d1, d2, d3, d4) are also investigated.

For the 4Q configurations with h ≤ 8, we identify 163

as the spatial size and 32 as the temporal one. On the
other hand, the calculation for the large-size 4Q config-
urations with h > 8 is performed by identifying 162 × 32
as the spatial size and 16 as the temporal one. In both
cases, we use corresponding translational and rotational
symmetries on lattices for the calculation of ⟨W4Q⟩.
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FIG. 6: A planar configuration of the tetraquark system.
Q1Q2 is parallel to Q̄3Q̄4, and H1H2 is perpendicular to Q1Q2

and Q̄3Q̄4. We call the cases with d1 = d2 = d3 = d4 ≡ d as
“symmetric planar 4Q configurations”.
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FIG. 7: A twisted configuration of the tetraquark system.
Q1Q2 is perpendicular to Q̄3Q̄4, and H1H2 is perpendicular
to Q1Q2 and Q̄3Q̄4. We call the cases with d1 = d2 = d3 =
d4 ≡ d as “symmetric twisted 4Q configurations”.

For these types of 4Q configurations, we construct the
4Q Wilson loop W4Q with the junctions locating at H1

and H2, and calculate the 4Q potential V4Q from ⟨W4Q⟩
using the smearing method.
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M̃i, L̃i,R̃i (i=1,2) are given by

M̃i, L̃i, R̃i ≡ P exp {ig
∫

Mi,Li,Ri

dxµAµ(x)} ∈ SU(3)c.(9)

Here, L̃12 and R̃12 are defined by

L̃a′a
12 ≡

1

2
ϵabcϵa

′b′c′Lbb′

1 Lcc′

2 , (10)

R̃a′a
12 ≡

1

2
ϵabcϵa

′b′c′Rbb′

1 Rcc′

2 . (11)

The ground-state 4Q potential V4Q is extracted as

V4Q = − lim
T→∞

1

T
ln⟨W4Q⟩. (12)

In general, the 4Q Wilson loop ⟨W4Q⟩ contains excited-
state contributions, and is expressed as

⟨W4Q⟩ =
∞
∑

n=0

Cne−VnT , (13)

where V0 denotes the ground-state 4Q potential V4Q and
Vn (n = 1, 2, 3..) the nth excited-state potential. In prin-
ciple, V4Q can be obtained from the behavior of ⟨W4Q⟩ at
the large T region where the ground-state contribution
becomes dominant. In the practical simulation, however,
the accurate measurement of V4Q is not easy for large T ,
since ⟨W4Q⟩ decreases exponentially with T .

To extract the ground-state potential V4Q in lattice
QCD, we adopt the gauge-covariant smearing method
[2, 3, 4, 5, 6, 7] to enhance the ground-state compo-
nent of the 4Q state in the 4Q Wilson loop. The smear-
ing is known to be a powerful method for the accurate
measurement of the Q-Q̄ [2, 3, 4] and the 3Q potentials
[5, 6, 7], and is expressed as the iterative replacement
of the spatial link variables Ui(s) (i=1,2,3) by the ob-
scured link variables Ūi(s) ∈ SU(3)c which maximizes
Re tr {Ū †

i (s)Vi(s)} with

Vi(s) ≡ αUi(s) +
∑

j ̸=i

∑

±

{U±j(s)Ui(s ± ĵ)U †
±j(s + î)} (14)

with the simplified notation of U−j ≡ U †
j (s− ĵ). We here

adopt the smearing parameter α = 2.3 and the itera-
tion number Nsmr = 30, which enhance the ground-state
component in the 4Q Wilson loop at β=6.0 in most cases.
(See the next section.)

IV. LATTICE QCD RESULTS FOR THE 4Q
POTENTIAL

The lattice QCD simulations are performed with the
standard plaquette action at β = 6.0 on the 163 × 32
lattice at the quenched level. The lattice spacing a is
estimated as a ≃ 0.104fm, which leads to the string ten-
sion σQQ̄ ≃ (427MeV)2 in the QQ̄ potential, using the

numerical relation σQQ̄ ≃ 0.0506a−2 obtained from the
fitting analysis on the on-axis data of the QQ̄ potential
in lattice QCD at β = 6.0 [6, 8]. The gauge configura-
tions are taken every 500 sweeps after 5000 sweeps using
the pseudo-heat-bath algorism. We use 300 configura-
tions for the 4Q potential simulation. For the estimation
of the statistical error of the lattice data, we adopt the
jack-knife error estimate.

On the 163× 32 lattice, we investigate the typical con-
figuration of 4Q systems as shown in Figs.6 and 7. In
Fig.6, the 4Q system has a planar structure. In Fig.7, the
4Q system has a twisted (three-dimension) structure. In
particular, we analyze in detail the symmetric planar and
twisted 4Q configurations with d1 = d2 = d3 = d4 ≡ d,
although more general asymmetric 4Q configurations
with various (d1, d2, d3, d4) are also investigated.

For the 4Q configurations with h ≤ 8, we identify 163

as the spatial size and 32 as the temporal one. On the
other hand, the calculation for the large-size 4Q config-
urations with h > 8 is performed by identifying 162 × 32
as the spatial size and 16 as the temporal one. In both
cases, we use corresponding translational and rotational
symmetries on lattices for the calculation of ⟨W4Q⟩.
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FIG. 6: A planar configuration of the tetraquark system.
Q1Q2 is parallel to Q̄3Q̄4, and H1H2 is perpendicular to Q1Q2

and Q̄3Q̄4. We call the cases with d1 = d2 = d3 = d4 ≡ d as
“symmetric planar 4Q configurations”.
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FIG. 7: A twisted configuration of the tetraquark system.
Q1Q2 is perpendicular to Q̄3Q̄4, and H1H2 is perpendicular
to Q1Q2 and Q̄3Q̄4. We call the cases with d1 = d2 = d3 =
d4 ≡ d as “symmetric twisted 4Q configurations”.

For these types of 4Q configurations, we construct the
4Q Wilson loop W4Q with the junctions locating at H1

and H2, and calculate the 4Q potential V4Q from ⟨W4Q⟩
using the smearing method.
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Static Potential for Four Quarks
Confirmation from Lattice QCD simulations

symmetric planar symmetric twisted
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FIG. 10: The tetraquark (4Q) potential V4Q: (a) for sym-
metric planar 4Q configurations as shown in Fig.6; (b) for
symmetric twisted 4Q configurations as shown in Fig.7. The
symbols denote the lattice QCD results. The curves describe
the theoretical form: the solid curve denotes the OGE plus
multi-Y Ansatz, and the dashed-dotted curve the two-meson
Ansatz.

We also investigate more general asymmetric 4Q con-
figurations with various (d1, d2, d3, d4) for both planar
and twisted cases, as shown in Table V and VI. Also
for the asymmetric planar and twisted 4Q configurations,
V4Q seems to be well described with the OGE plus multi-
Y Ansatz in the case of h > 2√

3
di (i = 1, 2, 3, 4). Note

here that some 4Q configurations are physically equiva-
lent, e.g., the planar cases with (d1, d2, d3, d4)=(1,1,1,2)
and (0,2,1,2), although the corresponding smeared 4Q
Wilson loops are different. For such cases, the lattice
QCD results are found to be almost the same. In fact,
the extracted lattice results are almost independent of
the way how the 4Q Wilson loop is constructed, as long
as the spatial locations of the static four quarks are the
same. This indicates that the ground-state contribution
is properly extracted in the present calculation.

As the conclusion, the OGE plus multi-Y Ansatz well
describes the 4Q potential V4Q, when QQ and Q̄Q̄ are
well separated, e.g., the “inter-diquark distance” h is
large in comparison with the “diquark size” d. On the
other hand, when the nearest quark and antiquark pair is
spatially close, the system is described as a “two-meson”
state.

Together with the previous studies [5, 6, 36, 37, 38, 39,
40, 41] for the inter-quark potentials in lattice QCD, we
have found the universality of the string tension as

σQQ̄ ≃ σ3Q ≃ σ4Q ≃ σ5Q ≃ (420MeV)2, (21)

and the OGE result for the Coulomb coefficient as

AQQ̄ ≃ 2A3Q ≃ 2A4Q ≃ 2A5Q ≃ 0.27. (22)

In particular, these lattice QCD studies [36, 37, 38, 39,
40, 41] indicate a fairly good agreement among σ3Q, σ4Q

and σ5Q, which seem to be slightly smaller than σQQ̄. (As
an interesting possibility, the numerical similarity among
σ3Q, σ4Q and σ5Q may reflect the similar structure of
the Y-type flux-tube in the multi-quark systems.) The
universality of the string tension observed in our lattice
QCD studies [5, 6, 36, 37, 38, 39, 40, 41] seems to be
consistent with the hypothetical flux-tube picture [49, 50,
51, 52, 53, 54, 55, 56] or the strong-coupling expansion
scheme [50, 51], although strong-coupling QCD does not
have a continuum limit and is far from real QCD. As
for the irrelevant constant, CQQ̄, C3Q, C4Q and C5Q are
non-scaling unphysical quantities appearing in the lattice
regularization, and we find an approximate relation as

CQQ̄

2
≃

C3Q

3
≃

C4Q

4
≃

C5Q

5
≃ 0.32a−1 (23)

in lattice QCD [5, 6, 36, 37, 38, 39, 40, 41].

B. The quark confinement force in 4Q systems

While the short-distance OGE Coulomb force can be
understood with perturbative QCD, the long-distance
confinement force is a typical nonperturbative quantity
and highly nontrivial particularly for multi-quark sys-
tems. To specify the long-distance property of V4Q is
important to clarify the confinement mechanism from a
wide viewpoint including multi-quarks, and it also leads
to a proper quark-model Hamiltonian to describe multi-
quark systems. Therefore, we perform a further analysis
for the long-distance force in 4Q systems.

To clarify the long-distance force in the 4Q system, we
plot V4Q against Lc4Q

min for planar and twisted 4Q config-

urations in Figs.11(a) and (b), respectively. Here, Lc4Q
min

denotes the minimal flux-tube length for the connected
4Q system. In both planar and twisted cases, for large
Lc4Q

min, V4Q approaches a linearly arising function of Lc4Q
min.

To single out the long-distance confinement force, we
consider the 4Q potential subtracted by the Coulomb
part. Here, we subtract the OGE Coulomb part V Coul

c4Q

of Vc4Q in Eq.(5) for the connected 4Q system, with the
Coulomb coefficient A4Q fixed to be A3Q in the 3Q poten-

tial V3Q in Ref.[6]. We plot V4Q −V Coul
c4Q against Lc4Q

min for
planar and twisted 4Q configurations in Figs.12 (a) and
(b), respectively. For the planar 4Q system, V4Q −V Coul

c4Q

approaches σ4QLc4Q
min + C4Q except for a small h region,
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FIG. 10: The tetraquark (4Q) potential V4Q: (a) for sym-
metric planar 4Q configurations as shown in Fig.6; (b) for
symmetric twisted 4Q configurations as shown in Fig.7. The
symbols denote the lattice QCD results. The curves describe
the theoretical form: the solid curve denotes the OGE plus
multi-Y Ansatz, and the dashed-dotted curve the two-meson
Ansatz.

We also investigate more general asymmetric 4Q con-
figurations with various (d1, d2, d3, d4) for both planar
and twisted cases, as shown in Table V and VI. Also
for the asymmetric planar and twisted 4Q configurations,
V4Q seems to be well described with the OGE plus multi-
Y Ansatz in the case of h > 2√

3
di (i = 1, 2, 3, 4). Note

here that some 4Q configurations are physically equiva-
lent, e.g., the planar cases with (d1, d2, d3, d4)=(1,1,1,2)
and (0,2,1,2), although the corresponding smeared 4Q
Wilson loops are different. For such cases, the lattice
QCD results are found to be almost the same. In fact,
the extracted lattice results are almost independent of
the way how the 4Q Wilson loop is constructed, as long
as the spatial locations of the static four quarks are the
same. This indicates that the ground-state contribution
is properly extracted in the present calculation.

As the conclusion, the OGE plus multi-Y Ansatz well
describes the 4Q potential V4Q, when QQ and Q̄Q̄ are
well separated, e.g., the “inter-diquark distance” h is
large in comparison with the “diquark size” d. On the
other hand, when the nearest quark and antiquark pair is
spatially close, the system is described as a “two-meson”
state.

Together with the previous studies [5, 6, 36, 37, 38, 39,
40, 41] for the inter-quark potentials in lattice QCD, we
have found the universality of the string tension as

σQQ̄ ≃ σ3Q ≃ σ4Q ≃ σ5Q ≃ (420MeV)2, (21)

and the OGE result for the Coulomb coefficient as

AQQ̄ ≃ 2A3Q ≃ 2A4Q ≃ 2A5Q ≃ 0.27. (22)

In particular, these lattice QCD studies [36, 37, 38, 39,
40, 41] indicate a fairly good agreement among σ3Q, σ4Q

and σ5Q, which seem to be slightly smaller than σQQ̄. (As
an interesting possibility, the numerical similarity among
σ3Q, σ4Q and σ5Q may reflect the similar structure of
the Y-type flux-tube in the multi-quark systems.) The
universality of the string tension observed in our lattice
QCD studies [5, 6, 36, 37, 38, 39, 40, 41] seems to be
consistent with the hypothetical flux-tube picture [49, 50,
51, 52, 53, 54, 55, 56] or the strong-coupling expansion
scheme [50, 51], although strong-coupling QCD does not
have a continuum limit and is far from real QCD. As
for the irrelevant constant, CQQ̄, C3Q, C4Q and C5Q are
non-scaling unphysical quantities appearing in the lattice
regularization, and we find an approximate relation as

CQQ̄

2
≃

C3Q

3
≃

C4Q

4
≃

C5Q

5
≃ 0.32a−1 (23)

in lattice QCD [5, 6, 36, 37, 38, 39, 40, 41].

B. The quark confinement force in 4Q systems

While the short-distance OGE Coulomb force can be
understood with perturbative QCD, the long-distance
confinement force is a typical nonperturbative quantity
and highly nontrivial particularly for multi-quark sys-
tems. To specify the long-distance property of V4Q is
important to clarify the confinement mechanism from a
wide viewpoint including multi-quarks, and it also leads
to a proper quark-model Hamiltonian to describe multi-
quark systems. Therefore, we perform a further analysis
for the long-distance force in 4Q systems.

To clarify the long-distance force in the 4Q system, we
plot V4Q against Lc4Q

min for planar and twisted 4Q config-

urations in Figs.11(a) and (b), respectively. Here, Lc4Q
min

denotes the minimal flux-tube length for the connected
4Q system. In both planar and twisted cases, for large
Lc4Q

min, V4Q approaches a linearly arising function of Lc4Q
min.

To single out the long-distance confinement force, we
consider the 4Q potential subtracted by the Coulomb
part. Here, we subtract the OGE Coulomb part V Coul

c4Q

of Vc4Q in Eq.(5) for the connected 4Q system, with the
Coulomb coefficient A4Q fixed to be A3Q in the 3Q poten-

tial V3Q in Ref.[6]. We plot V4Q −V Coul
c4Q against Lc4Q

min for
planar and twisted 4Q configurations in Figs.12 (a) and
(b), respectively. For the planar 4Q system, V4Q −V Coul

c4Q

approaches σ4QLc4Q
min + C4Q except for a small h region,

Takahashi, et. al., hep-lat/0412012
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Lmin for Butterfly
Two numerical technical issues

b2

b1

b4

b3

V butterfly = �↵s

3

✓
1

r13
+

1

r14
+

1

r23
+

1

r24

◆

�2↵s

3

✓
1

r12
+

1

r34

◆
+

1

a2
Lmin

The first one is how to determine the minimum flux-tube 
length for the butterfly configuration
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Similar to the Fermat-Torricelli point

Which has three vertexes in two-dimensional space
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Steiner tree problem
The more general problem is called Steiner tree problem

This problem is NP-hard. 

Fortunately, we only have four b’s
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Steiner tree problem
It requires iterative method to find the Steiner points

7

v1
v2

C12

v3
v4

C34

s2

s1

w12

w34

FIG. 6: The confining potential V4 for the tetraquark system (v1v2v3v4) is the
minimal length of the tree kv1s1k+ kv2s1k+ ks1s2k+ ks2v3k+ ks2v4k when s1

and s2 are varied. It is also the maximal distances between the circles C12 and C34,
i.e., the distance w12w34. The Melzak circle C12 is centered at the middle of v1 and
v2, has v1v2 as axis and a radius kv1v2k

p
3/2, and C34 has analogous properties in

the antiquark sector.

Proof of the inequality (10) If we have a positively oriented edge from s1 to s2, i.e., the Steiner tree is non degenerate, then
we have

V4  (kxk+ kyk)
p

3/2 + kzk = B

using Melzak circles.
However the bound required is for U = min {d13 + d24, d14 + d23, V4}. So we want to confirm that

U  (kxk+ kyk)
p

3/2 + kzk = B

is valid, regardless of whether V4 is a degenerate or non degenerate Steiner tree.
We follow the variational method introduced in [31]. The problem is formulated as a global optimisation problem as follows;
Define L as the length of the formal Steiner tree spanned by the four vertices. This length is obtained from the distance between

the farthest points on the two Melzak circles. In terms of the usual Steiner tree components, L = kv1s1k+ kv2s1k± ks1s2k+

kv3s2k + kv4s2k). We get the positive sign for ks1s2k if there is a real Steiner tree. On the other hand, if the Steiner vertices
have interchanged position, so that on the line between the two farthest Melzak points, s2 is closer to the Melzak point for v1, v2

than s1, then we have the negative sign for ks1s2k. So we can construct a formal tree on the six vertices v1, v2, v3, v4, s1, s2

where the edge joining the two Steiner vertices is ‘negatively oriented’.
Now it is easy to see that L  (kxk+ kyk)

p
3/2 + kzk. So if V = L then the desired inequality follows trivially. So we only

need to consider the situation where L < V , i.e the Steiner tree is formal rather than a real Steiner tree. Now by the inequality

Ay, Richard, Rubinstein, 0901.3022

X

kj links

(~x(i+1)
k � ~x

(i+1)
j )

(|~x(i)
k � ~x

(i)
j |)

= 0

Usually, after 20 steps, the results become stable

Smith, algorithmica, 7 (1992) 137
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DMC for many-body Schrodinger
One could use the standard variation methods. It turns out 
be very timing consuming

Instead, we adopt the Diffusion Monte Carlo method  

X

n

e

�iEnt n(~x)

The time-dependent wave-function evolves as

Replace the time by an imaginary time and change all 
energy levels by a guess groundstate energy

X

n

e

�(En�Eg)⌧ n(~x)
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DMC for many-body Schrodinger
X

n

e

�(En�Eg)⌧ n(~x)

After a sufficiently long time, only when                , the 
wave-function is stabilized                    

Eg = E0

Practically, the wave function in the DMC method is 
represented by random walks of many particles in the 
phase space 

To observe the behavior of wave function with respect to 
Eg, a “born-death” mechanism is designed such that when 
Eg is too large, the particles will replicate themselves and 
increase the total number of particles, and vise versa
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DMC for di-positronium molecular
We can reproduce the binding energy for the Ps2; the true 
answer is -0.435 eV
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DMC for 4-b Tetraquark
Two benchmark Cornell potential will be used

Quigg and Rosner, ‘1979
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the k parameter is 
introduced to check 
numerical stability
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Additional Binding Energies
Additional binding energies from dissociated di-meson 
structure

BM-I : mb = 4.79 GeV ,↵s = 0.38 , a = 2.43 GeV�1 ,

BM-II : mb = 5.17 GeV ,↵s = 0.36 , a = 2.34 GeV�1 .

Additional ~ 80 MeV binding energy for the tetra-quark 
compared to the dissociated di-meson state

Benchmark-I Benchmark-II

E0/2 (di-meson) 9.455 GeV 9.460 GeV

�E (flip-flop) �52 MeV �51 MeV

�E (flip-flop+butterfly) �80 MeV �78 MeV
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Wave-function
Making approximation that the wave-function is flat in r12
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Wave-function around Origin

The wave-function-squared at origin is around 1/2 of the 
dissociated di-meson configuration
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Hyperfine splitting for two-body
Similar to QED, the one-gluon exchange has the short-
range SD interactions

HSD � �C2 ↵s
2

3m1 m2
~s1 · ~s2 4⇡ �(r12)

Rujula, Georgi, Glashow, ‘1975
Eichten and Feinberg, ‘1981

The correction to spin-one is -1/3 compared to the 
correction to spin-zero 

Wave-function at origin enters into the calculation

For the four-b state, we need to have spin-configuration to 
satisfy the Pauli principle
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Ground-state Wave Function
Focusing on the flip-flop configure part of the wave-
function

 =

8
<

:
 (r13) (r24)⌦ |(b1¯b3)1(b2¯b4)1i ⌦ �(0,0)

13,24 for R1 ,

 (r14) (r23)⌦ |(b1¯b4)1(b2¯b3)1i ⌦ ��(0,0)
14,23 for R2 .

The total spin-zero wave function is

�(0,0)
13,24 =

1

2
(b"1b

#
3 � b#1b

"
3)(b

"
2b

#
4 � b#2b

"
4)

�(0,0)
14,23 =

1

2
(b"1b

#
4 � b#1b

"
4)(b

"
2b

#
3 � b#2b

"
3)

The spin-dependent correction is

�ESD = � 4↵s(µ)

3

1

m2
b

⇥
 2(r13 = 0) +  2(r24 = 0)

⇤
⇡ �145± 30 MeV
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Ground-state Tetraquark Energy
Altogether, we have ground-state energy for the 4-b tetra 
quark as

Which is below the possible decay thresholds of 

2M(⌘b) = 18.798 GeV

2M [Y (1S)] = 18.920 GeV

It is possible for this 18.69 GeV state decaying into Y(1S) 
and Y(1S)*, which decay to two leptons and observed at 
colliders 

M(0++) = 18.69± 0.03 GeV



35

Decay of this 18.59 GeV State
Schematically, the leading decay channel is like 

0++

b

b̄

g

g

It can be searched in the four-lepton channel like Higgs 
boson

0++

Y (1S)

Y (1S)⇤

e�, µ�

e+, µ+

e�, µ�

e+, µ+



Conclusions

A four-b tetraquark state with a mass around 18.7 GeV is 
predicted to exist
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We used the diffusion Monte Carlo method to numerically 
solve this many-body system 

This state, if with sufficient production cross sections, 
could be observed as a Y(1S)Y(1S)* resonance via the four-
lepton final state at the LHC

The calculation is based on the flux-tube model for the 
static potential of four quarks, which is supported by 
Lattice QCD



Thanks!
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Other Approaches
Operator-product expansion plus sum rules

6 Li. Reinders et aL, Hadron properties from QCD sum rules

To get a current with definite isospin, one has to take the appropriate combination of quark flavours.
The vacuum polarization induced by such a current is given by the two-point function

~ . i1’(q2) = if dx e1~(OIT(jr(x)jr(O))IO), (2.1)

and is represented by the diagram in fig. 1, where the vertex F depends on the current, and the blob
represents all possible diagrams which end in a quark—antiquark pair at the vertices. H’(q2) is a scalar
function, TMV... a tensor depending on the current in question, andT on the right-hand side denotes the
T-ordered product.
In the literature so far [1, 13—15] all possible currents with jPc = ~ ~, 1——, 0~~, 1~~, 1~,2~+ and

2 + that couple to the observed physical meson states have been studied, i.e. the following set of
currents:

— -

jsqiqj, -‘ —~

j~=iq,ySqJ, JPC =

jvqiy,Lqj,
— — TPC_i±+

JA—m.I~qIy~y5qJ, J —1

jN—q~r9~y5qi, J=1,

1T ~ + ~ +~~~J)q
1, jPc = 2~,

~ JPC~2_±,

where ~ = q~q~/q
2— g,~. The last three currents have not yet been studied for the flavour changing

case. The J~’C= 2~current has been constructed in [15]. The various currents differ by the current
quark vertex F.
On grounds of analyticity H’(q2) is related to its imaginary part by a dispersion relation, with a

number of subtractions depending on the current
( 2)n Imll’(s) n—I

H~(q2)= ~ J fl( — 2) ds + ~ ak(q). (2.3)

The unknown subtraction constants a, can be removed by taking the appropriate number of derivatives
of H’(q~).In turn the Im H’(s) is related to a cross section. In particular for the vector current jv(x) we
have

Im Hv(s) = ~2 2 so(e~e —* hadrons). (2.4)
64ir a

Fig. 1. Graphical representation of the two-point function (2.1). The dashed line indicates the current, and the blob stands for all possible diagrams
which end in a quark—antiquark pair at the vertices.

Reinders, Rubinstein, Yazaki, 
Physics Report, 1985

It works reasonable good for charmonium, but not good 
for the bottomonium

One could also perform a more systematically EFT to 
integrate out scales step by step via the NRQCD

where ψ is the Pauli spinor field that annihilates a heavy quark, χ is the Pauli spinor field

that creates a heavy antiquark, and Dt and D are the time and space components of the

gauge-covariant derivative Dµ. Color and spin indices on the fields ψ and χ have been

suppressed. The lagrangian Llight +Lheavy describes ordinary QCD coupled to a Schrödinger

field theory for the heavy quarks and antiquarks. The relativistic effects of full QCD are

reproduced through the correction term δL in the lagrangian (2.2).

The correction terms in the effective lagrangian for NRQCD that are most important for

heavy quarkonium are bilinear in the quark field or the antiquark field:

δLbilinear =
c1

8M3

(
ψ†(D2)2ψ − χ†(D2)2χ

)

+
c2

8M2

(
ψ†(D · gE− gE · D)ψ + χ†(D · gE− gE · D)χ

)

+
c3

8M2

(
ψ†(iD × gE− gE× iD) · σψ + χ†(iD × gE− gE× iD) · σχ

)

+
c4

2M

(
ψ†(gB · σ)ψ − χ†(gB · σ)χ

)
, (2.5)

where Ei = G0i and Bi = 1
2ϵ

ijkGjk are the electric and magnetic components of the gluon

field strength tensor Gµν . By charge conjugation symmetry, for every term in (2.5) involving

ψ, there is a corresponding term involving the antiquark field χ, with the same coefficient ci,

up to a sign. The operators in (2.5) must be regularized, and they therefore depend on the

ultraviolet cutoff or renormalization scale Λ of NRQCD. The coefficients ci(Λ) also depend

on Λ in such a way as to cancel the Λ-dependence of the operators. Renormalization theory

tells us that NRQCD can be made to reproduce QCD results as accurately as desired by

adding correction terms to the lagrangian like those in (2.5) and tuning the couplings to

appropriate values [13].

Mixed 2-fermion operators involving χ† and ψ (or ψ† and χ) correspond to the annihila-

tion (or the creation) of a QQ pair. Such terms are excluded from the lagrangian as part of

the definition of NRQCD. If such an operator annihilates a QQ pair, it would, by energy con-

servation, have to create gluons (or light quarks) with energies of order M . The amplitude

for annihilation of a QQ pair into such high energy gluons cannot be described accurately

in a nonrelativistic theory such as NRQCD. Nevertheless, as is discussed in Section II E, the

10

Bodwin, Braaten, Lepage
hep-ph/9407339
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Ground-state 4-c Tetraquark
Using the benchmark-I with       

Which is also below the decay thresholds of two J/Psi

mc = 1.37 GeV

The ground-state energy for the 4-c tetraquark has

↵s(2mc) ⇡ 0.25

M(0++) = 5.97± 0.04 GeV

2M(J/ ) = 6.194 GeV

Within the calculation uncertainty, it may have a two-body 
decay into two      and a smaller branching ratio  into       ⌘c
 (1S) (1S)⇤

2M(⌘c) = 5.961 GeV


